Approximate analysis of search algorithms with "physical" methods
نویسندگان
چکیده
An overview of some methods of statistical physics applied to the analysis of algorithms for optimization problems (satisfiability of Boolean constraints, vertex cover of graphs, decoding, ...) with distributions of random inputs is proposed. Two types of algorithms are analyzed: complete procedures with backtracking (Davis-Putnam-Loveland-Logeman algorithm) and incomplete, local search procedures (gradient descent, random walksat, ...). The study of complete algorithms makes use of physical concepts such as phase transitions, dynamical renormalization flow, growth processes, ... As for local search procedures, the connection between computational complexity and the structure of the cost function landscape is questioned, with emphasis on the notion of metastability.
منابع مشابه
Accuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery
Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...
متن کاملOptimum Routing in the Urban Transportation Network by Integrating Genetic Meta-heuristic (GA) and Tabu Search (Ts) Algorithms
Urban transportation is one of the most important issues of urban life especially in big cities. Urban development, and subsequently the increase of routes and communications, make the role of transportation science more pronounced. The shortest path problem in a network is one of the most basic network analysis issues. In fact, finding answers to this question is necessity for higher level ana...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملSYMBIOTIC ORGANISMS SEARCH AND HARMONY SEARCH ALGORITHMS FOR DISCRETE OPTIMIZATION OF STRUCTURES
In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap i...
متن کاملHybridization of Cuckoo Search and Firefly Algorithms to Calculate the Interaction Parameters in Phase Equilibrium Modeling Problems
Liquid-liquid equilibrium (LLE) problems such as phase stability analysis, phase equilibrium calculations, chemical equilibrium calculations, binary interaction parameter identification of thermodynamic models and other problems of fluid characterization have been the core subject of many recent studies. This study introduces Cuckoo Search (CS), Firefly Algorithms (FA) and its variants as p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره cs.CC/0302003 شماره
صفحات -
تاریخ انتشار 2003